Opencv de kalman le filtre de prédiction sans nouvelles observtion

Je wan à utiliser Opencv la mise en œuvre du filtre de Kalman pour lisser un peu de bruit de points. J'ai donc essayé de coder un test simple pour elle.

Disons que j'ai une observation (un point). Chaque image que je reçois une nouvelle observation, j'appelle de Kalman prédire et Kalman correcte. L'état vient après opencv filtre de Kalman correcte est "suivant le point", c'est ok.

Alors disons que j'ai un manque d'observation, je veux de toute façon le filtre de Kalman d'être mis à jour et de prédire le nouvel état. Voici mon code est un échec: si je l'appelle de kalman.predict() la valeur n'est plus mis à jour.

Voici mon code:

#include <iostream>
#include <vector>
#include <sys/time.h>

#include <opencv2/highgui/highgui.hpp>
#include <opencv2/video/tracking.hpp>

using namespace cv;
using namespace std;

//------------------------------------------------ convenience method for 
//                                                using kalman filter with 
//                                                Point objects
cv::KalmanFilter KF;
cv::Mat_<float> measurement(2,1); 
Mat_<float> state(4, 1); //(x, y, Vx, Vy)

void initKalman(float x, float y)
{
    //Instantate Kalman Filter with
    //4 dynamic parameters and 2 measurement parameters,
    //where my measurement is: 2D location of object,
    //and dynamic is: 2D location and 2D velocity.
    KF.init(4, 2, 0);

    measurement = Mat_<float>::zeros(2,1);
    measurement.at<float>(0, 0) = x;
    measurement.at<float>(0, 0) = y;


    KF.statePre.setTo(0);
    KF.statePre.at<float>(0, 0) = x;
    KF.statePre.at<float>(1, 0) = y;

    KF.statePost.setTo(0);
    KF.statePost.at<float>(0, 0) = x;
    KF.statePost.at<float>(1, 0) = y; 

    setIdentity(KF.transitionMatrix);
    setIdentity(KF.measurementMatrix);
    setIdentity(KF.processNoiseCov, Scalar::all(.005)); //adjust this for faster convergence - but higher noise
    setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1));
    setIdentity(KF.errorCovPost, Scalar::all(.1));
}

Point kalmanPredict() 
{
    Mat prediction = KF.predict();
    Point predictPt(prediction.at<float>(0),prediction.at<float>(1));
    return predictPt;
}

Point kalmanCorrect(float x, float y)
{
    measurement(0) = x;
    measurement(1) = y;
    Mat estimated = KF.correct(measurement);
    Point statePt(estimated.at<float>(0),estimated.at<float>(1));
    return statePt;
}

//------------------------------------------------ main

int main (int argc, char * const argv[]) 
{
    Point s, p;

    initKalman(0, 0);

    p = kalmanPredict();
    cout << "kalman prediction: " << p.x << " " << p.y << endl;
    /* 
     * output is: kalman prediction: 0 0
     *
     * note 1:
     *         ok, the initial value, not yet new observations
     */

    s = kalmanCorrect(10, 10);
    cout << "kalman corrected state: " << s.x << " " << s.y << endl;
    /* 
     * output is: kalman corrected state: 5 5
     *
     * note 2:
     *         ok, kalman filter is smoothing the noisy observation and 
     *         slowly "following the point"
     *         .. how faster the kalman filter follow the point is 
     *            processNoiseCov parameter
     */

    p = kalmanPredict();
    cout << "kalman prediction: " << p.x << " " << p.y << endl;
    /* 
     * output is: kalman prediction: 5 5
     *
     * note 3:
     *         mhmmm, same as the last correction, probabilly there are so few data that
     *         the filter is not predicting anything..
     */

    s = kalmanCorrect(20, 20);
    cout << "kalman corrected state: " << s.x << " " << s.y << endl;
    /* 
     * output is: kalman corrected state: 10 10
     *
     * note 3:
     *         ok, same as note 2
     */

    p = kalmanPredict();
    cout << "kalman prediction: " << p.x << " " << p.y << endl;
    s = kalmanCorrect(30, 30);
    cout << "kalman corrected state: " << s.x << " " << s.y << endl;
    /* 
     * output is: kalman prediction: 10 10
     *            kalman corrected state: 16 16
     *
     * note 4:
     *         ok, same as note 2 and 3
     */   


    /*
     * now let's say I don't received observation for few frames,
     * I want anyway to update the kalman filter to predict 
     * the future states of my system
     *
     */
    for(int i=0; i<5; i++) {
        p = kalmanPredict();
        cout << "kalman prediction: " << p.x << " " << p.y << endl;
    }
    /* 
     * output is: kalman prediction: 16 16
     * kalman prediction: 16 16
     * kalman prediction: 16 16
     * kalman prediction: 16 16
     * kalman prediction: 16 16
     *
     * !!! kalman filter is still on 16, 16..
     *     no future prediction here..
     *     I'm exprecting the point to go further..
     *     why???
     *
     */   

    return 0;
}

Je pense que ce code est assez illustratif de ce que je ne comprends pas. J'ai essayé de suivre un peu de théorie et certains exemple pratique mais n'a pas encore unserstand comment obtenir une nouvelle prédiction de la position future..

Quelqu'un peut m'aider à comprendre ce que je fais mal?

OriginalL'auteur nkint | 2013-08-23